	Vergleich Werkstoffe für Magnesium- Schmelz- und Dosierofentiegel				
Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828		
US-Norm (ASTM)	444	309			
Kurzname	X2CrMoTi18-2	X15CrNiSi20-12			
Zusammensetzung		Chrom 19-21%, Nickel 11-13%, Silizium 1,5-2,0%, Mangan max. 2%, Kohlenstoff max. 0,2%	Außenmantel wie 1.4828, innen niedriglegierter Kesselblechstahl (z.B. HI bzw. 1.0345 mit Mangan 0,40-1,40%))		
Grundgefüge	ferritisch	austenitisch	Außenmantel austenitisch, Grundwerkstoff ferritisch		
Besonderheiten	Kohlenstoff (gut umformbar); Gefüge stabilisiert	hoher Nickelgehalt, daher für Schmelz- und Dosieröfen in Gießereien nicht verwendbar! (s.a. unten in Zeile "Anmerkungen")			
typische Wandstärken		15 mm für Tiegel bis max. 1000 kg Magnesium, 20 mm für Tiegel mit bis zu 3000 kg Magnesium	18 mm Kesselblech + 4 mm 1.4828 für Tiegel bis max. 1000 kg Magnesium, analog 24 + 6 mm für Tiegel mit bis zu 3000 kg Magnesium		
	sehr gut; es liegt hauptsächlich am Chromgehalt, dass Edelstähle korrosionsbeständig sind. Der zusätzlich Molybdängehalt erhöht noch wesentlich die Korrosionbeständigkeit, da 1% Molybdän wirkt wie 3,3% Chrom (s. "Wirksumme W"), jedoch ohne die negativen Auswirkungen (Versprödung) eines hohen Chromgehalts. Der 1.4521 ist sowohl gegen schwefel- als auch fluorhältige Gase beständig.	im allgemeinen auch gut, jedoch erfolgt wegen des hohen Nickelgehaltes bei hohen Temperaturen ein Angriff durch schwefelhältige Gase (z.B. SO2 Schutzgas) durch Bildung von niedrigschmelzenden Ni-S Verbindungen. Anm.: entgegen der landläufigen Meinung trägt der hohe Nickelgehalt bei den Austeniten nichts zur Korrosionsbeständigkeit bei, er bewirkt in erster Linie ein hohes Verformungs-vermögen indem das Nickel die dehnbare kubisch flächenzentrierte Gitterstruktur auch bei tiefen Temperaturen stabilisert. Dies ist für die Verwendung als Tiegel in Magnesiumöfen irrelevant.	außen wie 1.4828; inneres Kesselblech jedoch schlecht, insbesondere kommt es v.a. mit fluorhältigen Schutzgasen über der Schmelze zur Flußsäurebildung, welche das innere Kesselblech sehr schnell angreift. (s.a. unten in Zeile "Anmerkungen")		
Zunderbeständigkeit	gut v.a. wegen Molyhdängehalt, aher auch weil	gut wegen Siliziumgehalt	Außenmantel s. 1.4828; das innere Kesselblech ist nicht zunderbeständig		
	gut; 0,2% Dehngrenze höher und Zugfestigkeit etwas niedriger als bei 1.4828; Bruchdehnung ca. 20%.		schlecht; das Kesselblech hat bei Temperaturen bis 950°C keine nennenswerte Festigkeit mehr, da die Temperatur von 500°C für die Zeitstandsfestigkeit im Dauerbetrieb bei weitem überschritten wird. Ohne die stützende Wirkung der Außenhaut wäre Kesselblech für Tiegel in Magnesiumsöfen (ganz absehen von der sehr schlechten Korrosions- und Zunderbeständigkeit) überhaupt nicht verwendbar.		
Warmfestigkeit	gut wegen Molybdängehalt	mittel	Außenmantel wie 1.4828, Kesselblech bei Magnesiumschmelzetemperaturen sehr schlecht		
Sigmaphasenversprödung	herabgesetzt, da Molybdän das Gefüge stabilisiert	besonders ausgeprägt bei austenitischen Stählen, wenn sie längere Zeit Temperaturen zwischen 590 und 870°C ausgesetzt sind. Das ist genau der Bereich in welchem Magnesiumtiegel betrieben werden! → Gefahr des Sprödbruchs	Außenmantel wie 1.4828; für Kesselblech nicht zutreffend		

Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828
I/''K ornzortall''\	den Stickstoff abbindet und somit nicht mehr als	anfällig wegen relativ hohem Kohlenstoff und des Fehlens von Titan und/oder Niob zur Stabilisierung (Abbinden des Kohlenstoffs)	Außenmantel wie 1.4828; für inners Kesselbech nicht zutreffend
Spannunsrißkorrosion	unempfindlich wegen Molybdängehalt , welcher eine geschlossene Oxidschicht garantiert. Durch die niedrige thermische Ausdehnungskoeffizienten des ferritischen Grundmaterials kommt es nicht zum Aufreißen bzw. Abplatzen der äußeren Oxidschicht	empfindlich wie alle Austenite, insbesondere bei zyklischen Temperaturwechseln kommt es aufgrund des großen Unterschiedes in der Wärmeausdehnung zwischen dem austenitischen Grundwerkstoff und der oberflächlichen Oxidschicht dazu, dass diese bei der Erwärmung aufgerissen wird. Dadurch ist der Grundwerkstoff eine Zeitlang schutzlos einem Korrosionsangriff ausgeliefert. Der Zwischenraum zwischen den Rissen verheilt im Laufe der Lauf der Zeit zwar wieder, nimmt die Tiegeltemperatur wieder ab, dann zieht sich der Grundwerkstoff stärker zusammen und die Oxidschicht platzt stellenweise wieder ab, wodurch es wieder zum Korrosionsangriff kommt.	Außenmantel wie 1.4828; für inneres Kesselblech nicht zutreffend
Wärmeausdehungs- koeffizient [K exp-1]	10 x 10exp-6 bei RT (wesentlich niedriger als 1.4828 → vorteilhaft)	17 x 10exp-6 bei RT	Außenmantel wie 1.4828; Kesselblech 12 x 10exp-6 bei RT
Wärmeleitfähigkeit [W/(m x K)]	gut; 35 bei 600°C	schlecht; 20 bei 500°C	schlecht wegen der erforderlichen großen Mindestwandstärken und wegen der Trennschicht zwischen Grundwerkstoff und Plattierung
Löslichkeit von Eisen durch Schmelze		schwer, da Fe in einer komplexen Legierung gebunden ist; Schutz durch Chromoxidschicht	leicht, da Fe im inneren Tiegelwerkstoff "frei verfügbar" ist
magnetische Eigenschaften	magnetisch, ab Curietemperatur 650°C nicht	nicht magnetisch	magnetisch, ab 770°C Curietemperatur nicht magnetisch
Eignung für Induktionsöfen	welche tiefer ist als übliche Schmelze- Warmhaltetemperaturen; der Tiegelinhalt kann sofort	gut, da nicht magnetisch. Aufgrund der schlechten Wärmeleitfähigkeit besteht Risiko der partiellen Überhitzung wenn der Tiegel nicht exakt in der Spulenmitte sitzt.	bedingt geeignet wegen der relativ hohen Curietemperatur des Grundmaterials, welche höher ist als übliche Warmhaltetemperaturen; Tiegel darf nicht unter die Curietemperatur fallen, da dieser sonst das EM-Feld abschirmt und der Tiegelinhalt nicht ankoppeln kann
Preisniveau	ISANT NOCH WAGAN SONGATOTOGIIKTION	relativ niedrig, trotz hohem Nickelgehalt, da hohe Verfügbarkeit	sehr hoch wegen Plattierwalzverfahren, es gibt in Europa nur einen einzigen Hersteller (VOEST)
Hinweis	Tiegel im ausgeschalteten Ofen abkühlen. Der Tiegel sollte keiner Stossbeanspruchung ausgesetzt werden, wie z.B. mit schweren Hämmern oder Meißeln auf die Tiegelwand schlagen, weder	negerim ausgeschafteten Ofen abkunien. Der	Wegen der stark unterschiedlichen Wärmeausdehnungen besteht im Laufe der Zeit die Gefahr, dass sich der Mantel vom Grundwerkstoff ablöst. Dann tritt erhebliche Zunderbildung auf, welche rasch zum Tiegelbruch führt.

Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828
Anmerkungen	Anm.: es gibt ein Patent (US4353535) aus dem Jahr 1982 und 1984 (US4424436), in welchen die Verwendung von ASTM 444 (entspr. 1.4521) als Werkstoff für Magnesiumtiegel beschrieben wird	und somit zum Gießen verwendet werden könnte.	Korrosionsangriff mit fluorhältigen Schutzgasen so groß war, das das Tiegelmaterial oberhalb der
Beurteilung	•	Dosierofentiegel für den Einsatz in elektrisch oder mir Brenngas beheizten Öfen aufgrund der	als Werkstoff für Magnesium- Schmelz- und Dosierofentiegel für den Einsatz in elektrisch oder mit Brenngas beheizten Öfen aufgrund der Probleme mit der Korrosion und der Wandstärkenabnahme schlecht geeignet. Jedoch für Zinkschmelzwannen sehr gut geeignet, da keine schwefel- oder fluorhältigen Schutzgase verwendet werden und wegen dem niedrigen Temperaturniveau die Auswirkungen der unterschiedliche Wärmeausdehnung der beiden Werkstoffe nicht ausgeprägt ist.